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State-dependent representation 
of stimulus-evoked activity in 
high-density recordings of neural 
cultures
Thierry Nieus1,4, Valeria D’Andrea   2, Hayder Amin1, Stefano Di Marco   1,5, Houman Safaai   2,3, 
Alessandro Maccione1, Luca Berdondini   1 & Stefano Panzeri   2

Neuronal responses to external stimuli vary from trial to trial partly because they depend on continuous 
spontaneous variations of the state of neural circuits, reflected in variations of ongoing activity prior 
to stimulus presentation. Understanding how post-stimulus responses relate to the pre-stimulus 
spontaneous activity is thus important to understand how state dependence affects information 
processing and neural coding, and how state variations can be discounted to better decode single-trial 
neural responses. Here we exploited high-resolution CMOS electrode arrays to record simultaneously 
from thousands of electrodes in in-vitro cultures stimulated at specific sites. We used information-
theoretic analyses to study how ongoing activity affects the information that neuronal responses carry 
about the location of the stimuli. We found that responses exhibited state dependence on the time 
between the last spontaneous burst and the stimulus presentation and that the dependence could be 
described with a linear model. Importantly, we found that a small number of selected neurons carry 
most of the stimulus information and contribute to the state-dependent information gain. This suggests 
that a major value of large-scale recording is that it individuates the small subset of neurons that carry 
most information and that benefit the most from knowledge of its state dependence.

Processing of external stimuli in neural circuits does not depend only on the stimulus presented as input to the 
circuit, but also on a number of internal neural and network variables often denoted as the “state” of the circuit1,2. 
Internal state variables that may influence the neural responses to an external stimulus include the neural activity 
still reverberating from the presentation of previous stimuli1,3, changes in the activity of the neuromodulatory 
nuclei that regulate behavioural states such as attention or arousal4, and intrinsic ongoing fluctuations of the 
excitability of a local or a large-scale network5,6. Changes of these state variables are reflected into changes of the 
spontaneous activity of the circuit prior to the application of the external stimulus4,6–13. Understanding how neu-
ral responses to stimuli depend on the network state variables captured by the ongoing activity is important for 
several reasons. It may help revealing the internal network context within which neurons operate10, thus helping 
in unravelling the mechanisms for complex, context dependent neural computations. It may give us clues on how 
the brain combines information from new sensory cues with information already present in neural activity. It 
can also shed light on the constraints under which neural population codes operate. A strong state-dependence 
of the response may either imply that populations have to transmit information only using codes that are robust 
to state fluctuations, or that, alternatively, downstream areas need to extract variables indicating the current net-
work state and use state-dependent decoding to interpret population activity14. Finally, it can help to understand 
how sources of trial-to-trial variations, or “noise” that is shared among neurons recorded by different electrodes, 
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can be modelled and then discounted in order to improve the performance of algorithms to extract information 
from neural activity4. This is important both to place bounds on the information that can be decoded from neural 
activity and to improve the performance of brain-machine interfaces.

State-dependent information processing has been studied at the level of small neural populations. However, 
it may involve a wide range of spatiotemporal scales of neural activity that are difficult to simultaneously access 
experimentally in-vivo. Reduced in-vitro models that exploit recent developments of large-scale recording 
multi-electrode arrays15 might therefore play a valuable role to study state-dependent coding at the scale of entire 
networks from which thousands of neurons are sampled. In this study, we take advantage of these large-scale 
in-vitro recordings to investigate the state dependent processing of stimulus information in cultured hippocampal 
neural networks. We delivered low-frequency trains of electrical stimuli (at 0.2 Hz) to the network from multiple, 
randomly selected on-chip electrode sites. Both ongoing and electrically evoked spiking network activities were 
acquired from 4096 closely spaced microelectrodes of CMOS-MEAs16. These devices allow almost complete sam-
pling of the neuronal spiking activity in these networks17.

In this study, we first investigated how different features of the network population responses encode stimu-
lus information. Second, to assess state dependence of neural information processing, we investigated whether 
knowledge of state variables, defined from measures of ongoing pre-stimulus spiking activity, increased the infor-
mation that could be extracted from neural responses. Third, to mathematically describe the state dependence of 
neural responses with simple models, we investigated whether network responses can be predicted by a model 
consisting of a linear combination of the spontaneous ongoing pre-stimulus activity and of the stimulus-evoked 
activity. Fourth, we tested our results in a modulated firing regime by manipulating the cell cultures with norep-
inephrine, a neurotransmitter that was shown to decrease the network synchrony both in-vivo18,19 and in-vitro20. 
Finally, by leveraging our access to thousands of simultaneously recording electrodes, we investigated whether the 
information about a stimulus set can efficiently be decoded when considering the responses of a relatively small 
group of neurons21.

Results
Large-scale neuronal recordings of spontaneous and electrically evoked activities in cultured 
networks.  We recorded ongoing and electrically-evoked neuronal spiking activity in n = 5 primary hip-
pocampal neuronal cultures grown for 24 days in-vitro using high-density CMOS multi-electrode array (CMOS-
MEAs) chips (Fig. 1a and b). These devices provide 4096 simultaneously recording electrodes (81 μm pitch) and 
16 individually addressable electrodes (1296 μm pitch) for delivering electrical stimuli. The spontaneous network 
activity and evoked spiking responses were recorded from each electrode at 7.7 KHz/electrode (Fig. 1c). Biphasic 
current stimuli (600 μs in duration, amplitude tuned between 200–600 μA) were delivered at a frequency of 
0.2 Hz from 8 spatially distributed sites using randomized sequences of the stimulation sites (total of 60 trials 
for each stimulation electrodes). As we have previously shown in these devices22, the artefacts of the electrical 
stimuli were localized in areas of ~100 μm in diameter around the stimulation sites. Therefore, by providing 
artefact-free recordings from electrodes close to the stimulation sites we could spatially and temporally resolve 
electrically evoked spiking responses at short lags (<3 ms) from the stimulation time. As previously reported23, 
the high spatiotemporal resolution of our recordings allowed us to show that spontaneous network activity was 
characterized by propagating waves of spikes (or network bursts) interleaved by inter-burst periods of sparse 
spiking activity (see the pre-stimulation activity in the raster plots of Fig. 1d). Electrical stimuli evoked propa-
gating network-wide bursts of spiking activity that visually resembled the bursts observed during spontaneous 
activity (Fig. 1d). Different trials of electrical stimulation from different sites, however, elicited different net-
work responses. Visual inspection of the network activity suggested to us that the trial-to-trial variability of the 
responses to the same electrical stimulus was modulated by the time (TB) of the stimulus application from the last 
spontaneous network burst observed prior to stimulation. For shorter TBs (TB < ~500 ms), the evoked responses 
were weaker and less spatially precise (Fig. 1d left). For longer TBs (TB > ~500 ms), the evoked responses were 
stronger and the stimulation induced multiple sequential waves of spikes propagating in the network (Fig. 1d 
right). To evaluate how the electrically evoked spiking activity depended on TB, we computed the trial-averaged 
number of spikes elicited over a time window of 100 ms for stimuli delivered at different ranges of TB. Results, 
averaged over all stimuli but plotted separately for individual cultures, show (Fig. 1e) that responses to stimuli 
delivered at long TB were consistently stronger than responses to stimuli delivered at short TB. In sum, both qual-
itative and quantitative analyses suggest that the variable TB could represent a suitable parameter to describe the 
state of the network. In the next sections, we will further inspect quantitatively the role of TB and other putative 
state variables in modulating the network responses to the stimuli.

The time (TB) between stimulation and last spontaneous network burst is the most informa-
tive network state variable.  Initial inspection of the data, as reported above, suggested that the time TB 
between stimulation and the last spontaneous network burst is a variable that strongly influences post-stimulation 
responses. In this section, we corroborate this intuition by selecting a number of other possible candidate state 
parameters θ, besides the already mentioned TB, and by comparing quantitatively the influence of different 
pre-stimulus ongoing activity parameters on stimulus-specific post-stimulus responses. As possible network state 
parameters, we considered: the number of spikes in the last network burst preceding the stimulation (NSP), the 
ignition site (IS) of the last network burst, the network burst rate (NBR), the amplitude (ampl) of low-frequency 
(6–12 Hz) fluctuations of network activity, the phase (phase) of such low-frequency fluctuation, and the mean 
firing rate (MFR).

To quantify the effect of each such pre-stimulus state variable θ on the stimulus specificity of the responses, 
we used information theory24–26. We computed and compared two different kinds of information4. First, we com-
puted the information I(S; R),about which stimulus s (out of a set of S) was presented, that was carried by the 
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post-stimulus response r in the same trial (see Eq. 3). Second, we quantified the information I(S; R, Θ), about 
which stimulus was presented, that was carried from the joint observation, in the same trial, of post-stimulus 
response r and pre-stimulus state parameter θ (see Eq. 4). Finally, to quantify the effect of the state variable on 
the stimulus-specificity of the neural response (and thus the stimulus information they carry), we used the dif-
ference I(S; R, Θ) − I(S; R), referred to as information gain. In our data, we verified that, as expected by the fact 
that θ is defined as a pre-stimulus variable, θ does not carry per se any stimulus information (see Supplementary 
Fig. S1). Under this condition, θ can carry stimulus information only through synergistic interaction with the 
post-stimulus response r (see Methods) and the quantity I(S; R, Θ) − I(S; R) is large when the state variable θ 

Figure 1.  High-resolution recordings of ongoing activity and electrically evoked responses in neuronal 
networks. (a) View of a CMOS-MEA chip and close up on the electrode array. The arrow indicates an electrode 
for electrical stimulation. Scale bars represent 5 mm (left) and 80 µm (close-up, right). (b) Immunofluorescence 
image of a hippocampal neuronal network, obtained in separate pilot experiments in which neurophysiology 
was not performed, grown on-chip for 18 DIVs and stained for MAP-2 (green), a neuron-specific marker for 
dendrites, GFAP (red), a marker for astrocytes and NeuN (blue), a maker for neuronal nuclei. (c) Raw traces 
(left) and close-up around the stimulation instant (right) of representative electrodes showing ongoing and 
evoked spiking activity. (d) Raster plots illustrating the difference between evoked network response obtained 
with stimuli delivered at short (left) and long (right) time TB. Plots for two stimuli (S1, S2), delivered from two 
different electrodes, and for three stimulation trials are reported. As shown, for short TB (left) the response 
to a stimulus delivered at t = 0 is weaker than the response obtained for stimuli delivered at long TB (right). 
(e) Quantification of the averaged evoked number of spikes over a time window of 100 ms after stimulation as 
function of TB (8 different stimuli, 60 trials per stimuli). Each trace refers to a different cell culture. The TBs 
were grouped in quintiles. The reported mean and SEM on the x axis are computed over the quintiles of the TB 
distribution. The mean and SEM on y axis are computed on the corresponding evoked spikes.
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modified the stimulus-specificity of the neural responses, while it is small when θ did not modulate the stimulus 
specificity of the neural responses (see Methods). Importantly, this measure has the advantage of concentrating 
on the stimulus-specific effect of θ on r. Thus, the measure I(S; R, Θ) − I(S; R) is expected to be zero if Θ had a 
non-stimulus specific effect (or no effect at all) on the response probabilities and to be positive otherwise. To 
express this information gain in proportional terms, we also introduced the percentage information gain due to 
state dependence, defined as the ratio between I(S; R, Θ) − I(S; R) and I(S; R), multiplied by 100.

We investigated how this information changed when considering all the above described candidates for the 
pre-stimulus state variables Θ. For this analysis, and throughout this subsection, we focused on the simplest and 
most traditional representation of neural responses, r, that is the total spike rate (or multi-unit-activity, shortened 
as MUA hereafter) of the network activity computed as function of the post-stimulus time. The average across 
sessions of the information I(S; R) that MUA carried about stimuli, peaks at around ~20 ms and dropped almost 
to zero after ~500 ms from the stimulation time (Fig. 2a, dashed black curve). Averaging across sessions in the 
[0 100] ms post-stimulus interval, the information I(S; R) had a value of 0.29 ± 0.05 bits. The temporal profile of 
information was highly reproducible across experiments (Supplementary Fig. S2). We then evaluated the effect 
of using as state variable θ = TB, the time between the last spontaneous burst and stimulation, on the stimulus 
information carried by post-stimulus MUA. The increase in information due to the knowledge of the state vari-
able θ = TB was larger in the earlier parts of the neural response, particularly in the [0 100] ms range, where also 
the information I(S; R) was larger (Fig. 2a and Supplementary Fig. S2). Averaging across sessions in the [0 100] 
ms post-stimulus interval, the information I(S; R, Θ) had a value of 0.44 ± 0.06 bits. The information gain due 
to knowledge of state dependence was significant (p < 0.05; permutation test; FDR corrected) at 78% of all time 
points in the first 300 ms post-stimulus (Fig. 2a).

To understand which of the possible candidate state variables Θ (out of the set we considered) had a larger 
influence on the stimulus dependence of neural responses, we computed the information gain due to the knowl-
edge of the state variable θ that could be obtained above and beyond the stimulus information that could be 
obtained by r. Results (Fig. 2b) show that TB was the variable that gave the highest information gain, both in abso-
lute and in percentage terms. The information gain with TB, averaged across sessions in the [0 100] post-stimulus 
window, was 0.15 ± 0.01 bits, and was 51% in percentage terms. Other putative state variables, such as the instan-
taneous amplitude and phase of low-frequency MUA oscillations, led to lower information gains (Fig. 2b).

We then considered whether the information gain provided by other candidate state variables was comple-
mentary to that provided by TB, or instead whether TB was sufficient to account for the whole information gain. 
To address this question, we computed the gain of information by considering bi-dimensional state variables 
made of TB and any one of the other candidate state variables listed above. We compared this gain of information 
with the information gain obtained when considering as state variable only TB. This calculation was not possible, 
due to data sampling issues, with the direct calculation of information from the response probabilities, Eqs (3 and 
4). We thus performed it by first using a decoding procedure to reduce the dimensionality, and then computing 
the information in the confusion matrix of this decoder25 (see Supplementary Methods, Section “Computation 
of information from the confusion matrix of a decoder”). This calculation quantifies how well we decoded which 
stimulus was being presented based on the considered quantification on neural activity. The computation of 
information from the decoding matrix (Supplementary Eq. S1) has the advantage of being more data robust25 
than the direct calculation of total information in neural activity from Eq. 1, used above. This robustness allowed 
us to consider more state variables in this analysis. However, computing information through a decoder captures 
only a part of the total information in neural activity measured directly with Eqs 3 and 4 (see Supplementary 
Information, Section “Computation of information from the confusion matrix of a decoder”). Indeed, in our 
data we found that both the total stimulus information decoded through knowledge of post-stimulus MUA 
response and TB, the information gain obtained with TB when computed through the confusion matrix had a 
lower value (0.23 ± 0.01 and 0.06 ± 0.01 bits, respectively) than that obtained when computed directly from the 
response probabilities (Eqs 3 and 4) and reported in Fig. 2a,b. However, and importantly, this decoding analysis 
showed that the information gain obtained when decoding jointly more than one state variable was not higher 
(p = 0.98, one-way between-subjects ANOVA) than the one obtained when considering TB alone (Fig. 2c). This 
means that all other state variables give an information gain that is redundant to that obtained with TB. An 
intuitive explanation for this finding is that the other state variables that showed some information gain, such as 
NBR and MFR, were also strongly correlated with TB (NBR Pearson correlation = −0.81 ± 0.01, MFR Pearson 
correlation = −0.40 ± 0.12), and the other ones were not providing any appreciable information gain (Fig. 2b). 
Therefore, hereafter we will consider only θ = TB as state variable.

Post-stimulus network activity variables carrying the most stimulus information and gaining 
the most from considering state dependence.  In the above analysis, we concentrated on the informa-
tion carried by the total multi-unit-activity of the network. However, little is yet known about neural networks 
read out the output of other networks. In particular, it may be possible that a neural readout may weigh spikes 
of neurons at different locations with a different weight. To study in more depth the effect of the network state 
variables Θ = TB on different aspects of the neural population responses to different stimuli, and to check if state 
dependent gain was stable across different quantifications of the neural response, we computed the information 
gain and the percentage information gain for different representations of the population response feature that 
may carry stimulus information. The features of the neural population responses that we considered were the 
centre activity trajectory (CAT) in each time bin, which takes into account one prominent aspect of the spatial 
distribution of the propagating neural activity, and the projections of the neural activity in each time bin along 
one of the 10 first spatial Principal Components (PC) of the neural activity, a variable that takes into account 
the spatial structure of the population activity. Each of these different features of the neural population activity 
captures a different and potentially interesting aspect of its spatial structure. In particular, PCs provide a simple 
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Figure 2.  Post-stimulus response carries higher information about the stimulus when considered together 
with pre-stimulus state variable θ. (a) Time course of the across-sessions average (n = 5) of the information I(S; 
R, Θ) about stimuli carried by responses R and state variables Θ = TB (red solid line) and the across-sessions 
average of the information I(S; R)computed when destroying the information in the variable Θ by shuffling 
its values across trials (black dashed line). The red area delimits SEM across sessions of I(S; R, Θ). The grey 
area around I(S; R) delimits the area between the 5th and 95th percentiles of the average across sessions of 
the distribution I(S; R, ΘSH) obtained with N = 200 random permutations of state variables Θ across trials. 
Stars indicate time points in which I(S; R, Θ) is significantly higher than I(S; R) (one-tailed permutation test, 
p < 0.05 FDR corrected). (b) Mean and SEM across experiments of information gain (black line) and percentage 
information gain (red dashed line) in a [0 100] ms time window after the stimulus, for different state variables. 
Symbols { > < ̂  = −} mark data groups that have similar means (Tukey’s HSD, p < 0.05), see Supplementary 
Information. Black and red symbols indicate not significantly different means for, respectively, information 
gain (F(6, 639) = 76.06, p = 10−73 one-way between subject ANOVA followed by Tukey’s HSD multiple 
comparison test) and percentage information gain (F(6, 639) = 46.84, p = 10−48, same test). State variable TB has 
information gain and percentage information gain significantly higher than other considered state variables. (c) 
Mean and SEM across experiments of the decoded information gain summed in a [0 100] ms time window after 
the stimulus, for the TB state variable and corresponding bi-dimensional state variables (where TB is paired 
with either ampl, IS, MFR, NBR, NSP and phase). There are no significant different sessions averages of decoded 
information for any comparison between bi-dimensional and one-dimensional state variables (F(6, 28) = 0.18 
with p = 0.98, one-way between subject ANOVA).
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way to explore different ways to weigh neural activity that account for different portions of the variance of neural 
population responses. Because of this, PCs have been a popular tool to study candidate neural codes for decades27. 
All measures, described in Methods, were based on the network spiking activity discretized in 20 ms bins because 
this time scale were found empirically by us to be short enough to capture the major time scales of the observed 
variations and long enough to ensure robust calculations of the considered quantities (see also28,29). We found 
(Fig. 3a) that several PCs had much higher stimulus information I(S; R) than the one computed with the MUA. 
In particular, while PC1 had positive weights (Supplementary Fig. S4) and was approximately as informative as 
MUA and highly correlated with it (Pearson correlation = 0.91 ± 0.01), PC2 (a more spatially structured compo-
nent than PC1, see Supplementary Fig. S4 for examples of spatial structures) was the one that, across sessions, had 
the highest information. These results are consistent with earlier findings that the responses of cultured networks 
to electrical stimulations are highly spatially structured29. On average over sessions, the information in higher 
PCs was larger than MUA up to the 8th PC. The CAT representation carried an amount of information about the 
stimuli similar to that carried by PC1. The relatively high information carried by CAT reflected the fact that the 
position of the centre of mass of the evoked activity depended on the location at which the stimulus was applied29. 
We next investigated whether the information gain due to the modulation of the stimulus-response relationship 
by the state variable TB was different for the different spatial representations of neural responses. Results (Fig. 3b) 
showed that this information gain, expressing the strength of state modulations, was the highest for MUA but was 
also considerable for all PCs. One important exception was that the CAT showed a negligible state modulation. 
We note that we verified that the results on the information gain computed with state variables Θ others than TB 
and response variables R other than MUA were robust, i.e. the state variable TB remained the variable giving the 
most information gain for all considered choices of features quantifying population responses.

Linear models of the dependence of network responses to stimuli on the pre-stimulus state 
variable TB.  Results in previous section showed, with information theoretic measures, that the state variable 
TB strongly modulated the stimulus-response relationship of the network. However, these previous results did 
not describe how the state variables actually modulated the responses to different stimuli and how they affected 
the responses of the network in each single trial. Here, following previous works6,30,31, we used linear models 
to describe the stimulus-response relationship and its modulation by the state variable θ = TB on single trial 
response r. To characterize the modulation of TB on r we used MUA as the feature of r quantifying single trial 
neural responses, and we investigated whether the trial-to-trial variations around the stimulus-specific mean of 
each single-trial response could be described as a linear function of the state variable TB. Specifically, we consid-
ered the variation dr of the response r in each trial around the trial-averaged response to the stimulus presented 
in that trial:

= −⟨ ⟨ ⟩ ⟩dr TB r TB s r TB s( ) ( , ) ( , ) (1)s s

We computed this quantity for three ranges of TB values (short, intermediate, and long), considering as neu-
ral response feature the [0 100] ms post-stimulus window where the state modulation is larger (see Figs 3b and 
2a). Figure 4a–c show results from an example experiment (session 208). When pooling all trials to all stimuli, 

Figure 3.  Stimuli information carried by R changes according to different post-stimulus network responses. 
(a) Mean and SEM across experiments of I(S; R) summed over 100 ms post-stimulus time interval for 
different network responses R. Symbols { = ̂  > < v} mark data groups that have similar means (Tukey’s HSD, 
p < 0.05), see Supplementary Information, Different symbols indicate not significantly different means for 
information I(S; R)(F(12, 1287) = 30.45, p = 10−62, one-way between subject ANOVA followed by Tukey’s HSD 
multiple comparison test). PC2 response carries the highest stimulus information. (b) Mean and SEM across 
experiments of information gain (black line) and percentage information gain (red dashed line) for different 
network responses. Symbols { < > ̂  = } mark data groups that have similar means (Tukey’s HSD, p < 0.05), 
see Supplementary Information. Black symbols indicate not significantly different means for information 
gain (F(12, 1287) = 14.99, p = 10−30, one-way between subject ANOVA followed by Tukey’s HSD multiple 
comparison test). Differences between response measures are not significant for the percentage information 
gain (F(12, 1287) = 1.5, p = 0.11).
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we found that TB modulated (1-way ANOVA, F(2, 477)=100.4, p = 10−37) the response MUA in a single trial by 
increasing (respectively decreasing) the response, with respect to the stimulus-specific trial-averaged response, 
when TB was long (respectively short) in that trial (Fig. 4a). This is compatible with both an additive and a 
multiplicative effect of TB. To shed light on these two alternatives, we also investigated how the state parameter 
TB affected the trial-averaged MUA response to each stimulus. We computed trial-averaged responses to each 
stimulus and ranked them in each experiment according to their average value. We then separately computed 
stimulus-specific averages only to trials with short, intermediate or long values of TB, and fitted the trial-averaged 
firing rate dependence on each stimulus with a linear curve separately for each TB class. As shown in Fig. 4b 
for the example recording session, we found that a longer (respectively shorter) TB corresponded to a higher 
(respectively lower) stimulus response slope, thus suggesting that the time between the last burst and the stimulus 
application modulated the gain of the stimulus-response relationships.

Based on the above results, we described the effect of the state variable on r with a simple additive-multiplicative 
model of the type used to describe state dependence in cortical networks6,30, as follows:

= 〈 〉 +r g TB r b TB( ) ( ) (2)model S

The linear model in Eq. (2) describes a single-trial neural response rmodel as a stimulus-driven term rs (that is the 
mean response at fixed stimulus) with a multiplicative term g and an additive term b that both may depend on the 

Figure 4.  Single trial response r modeled as a linear combination of a stimulus-driven term and a noise term, 
both depending on state variable θ = TB. Panels A to C refer to the example recording session 208. All measures 
are computed in [0 100] ms time interval after stimulus. (a) Mean ± SEM across trials of trial-to-trial variability 
dr of MUA as a function of TB. State variable values are divided in three intervals: low TB if TB < 0.05s, high TB 
if TB ≥ 2s, intermediate TB otherwise. dr depends linearly on TB (Pearson correlation = 0.97, p = 10−37). (b) 
Single trial response r depends linearly on the mean response at fixed stimulus 〈r〉S with a slope g that depends 
on TB. Along the x-axis, MUA responses 〈r〉S are ranked according to the corresponding stimulus. On the y-axis 
mean response r across trials and SEM are reported for long, intermediate and short TB (lines represent best 
linear fits). (c) MUA gain parameter g of the purely multiplicative model as a function of TB; data points show 
mean and SEM of g(TB) for TB binned in 10 equi-populated intervals; red line shows bi-exponential fit to the 
data points. (d) Mean ± SEM across all experiments of BIC weights for, respectively, full model (red bars), 
purely multiplicative model (green bars) and purely additive model (blue bars). The BIC weight of the purely 
multiplicative model is significantly higher (1-way ANOVA followed by Tukey’s HSD multiple comparison test) 
than BIC weights estimated in other models when considering both MUA (F(2, 297) = 83.45, p = 10−29) and 
PC2 (F(2, 297) = 23.82, p = 10−10) as response features. (e) Mean and SEM across all experiments of the 
coefficients of determination R2

adj between responses R and Rmodel adjusted for the number of parameters used in 
the model is reported for MUA and PC2 response representations. For most of the response representations, the 
coefficient of determination is higher for the purely multiplicative model than for the full or purely additive 
model, although the means Radj

2  of different models are not significantly different (1-way ANOVA, p = 0.2) for 
the evaluated response representations.
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state variable TB. In this model, the state variable determines the response in each trial by adding state-dependent 
noise and/or by rescaling the stimulus-response relationship. For each trial and for each experiment, and sepa-
rately for each post-stimulus time, we estimated the additive b(TB) and multiplicative g(TB) model parameters by 
best fit to the data, with a four-fold cross-validation procedure (see Methods). Moreover, we considered for this 
specific analysis two different features for defining the neural response r: the MUA (the simplest and most widely 
used definition of response, which also has the largest state dependent information gain) and PC2 (the one that 
had the largest information).

To understand how necessary the additive and multiplicative components were, we fitted to the single trial 
data three variants of the model in Eq. (2): a “full model”, that included both multiplicative and additive terms as 
free parameter; a “purely multiplicative model” that contained only gain g as free parameter (with b set to zero); 
and a “purely additive model” that contained only baseline b as free parameter (with g set to one). The distribution 
of the best-fit gain parameters of the purely multiplicative model run using MUA as response variable r (and 
averaged across all trials and experiments in the [0 100] ms post-stimulus window) is shown in Fig. 4c, again for 
the example session, together with the fit to a bi-exponential function. For this estimation, we binned the state 
variable TB into 10 equi-populated intervals. The best-fit parameters of g(TB) showed a larger gain for longer TB 
values, compatible with the previous results showing that longer TB values enhanced the network responses to the 
stimuli. These results were robust across sessions (Supplementary Fig. S3). In particular, by applying a one-way 
ANOVA followed by Tukey’s HSD multiple comparison test, we found that the gain for long TB (TB >2 s) was, 
across all sessions, larger (p = 0.009) than the gain at intermediate TB (0.05 s < TB <2 s) and that the gain at inter-
mediate TB is larger (p = 0.001) then gain at short TB (TB < 0.05 s). To evaluate the fitting performances of these 
different models we used the Bayesian information criterion (BIC). Higher BIC weights indicated better model 
performance. We found (Fig. 4d) that the BIC weight of the purely multiplicative model was significantly higher 
(1-way ANOVA, F(2, 297) = 83.45, p = 10−29 for MUA, and F(2, 297) = 23.82, p = 10−10 for PC2) than in the oth-
ers models. For MUA, the BIC weights were 0.67 ± 0.08 for multiplicative; 0.27 ± 0.07 for additive and 0.06 ± 0.02 
for the full model. For PC2, the BIC weights were 0.55 ± 0.07 for multiplicative; 0.28 ± 0.03 for additive and 
0.17 ± 0.04 for the full model. As a consequence of the fact that the full model did not add explanatory power, we 
found that the model’s coefficient of determination adjusted for the number of coefficients Radj

2  was as large for the 
multiplicative model as for the full model (Fig. 4e). These results indicate that the time interval between the last 
spontaneous burst and the stimulus affected the responses mainly with a multiplicative term, and that all increases 
of MUA and PC2 scores at longer TB could be explained by a gain rescaling rather than a background addition.

An advantage of an explicit model of state modulation, such as the linear models in Eqs (1,2), is that it can be 
used to predict each single trial response to a stimulus from the value of the pre-stimulus state variable in that 
trial. This prediction can then be subtracted from the single trial responses to reduce their variability at fixed 
stimulus and increase in this way the information they carry. To evaluate how effective this discounting was 
at increasing the stimulus information in neural responses, we subtracted the prediction of the linear model 
of the trial-to-trial response variability based on TB in that trial, and we computed the information from this 
response that discounts state induced variability. We considered initially both multiplicative, additive and full 
linear models.

Figure 5a shows the mean and SEM across all experiments of the mutual information between stimuli and 
responses computed after discounting state dependency in a 100 ms time window after stimulus when consid-
ering as response features MUA and PC2, the most used and the most informative response features. Consistent 
with our findings presented above (Fig. 4) that the purely multiplicative state dependence model (Eq. (2) with 
b = 0) was the one most effective at predicting neural responses, we found that no model performed better than 
the multiplicative one at discounting state dependence to gain information (Fig. 5a). When using this multiplica-
tive model to discount state variability and testing it with MUA and all PCs as response features, we found that 
information increased significantly, both in absolute and in percentage terms, with respect to the information 
I(S; R) present before discounting, when both MUA and all PCs were used as response features (Fig. 5b). Being 
computed from knowing the value of both responses and state variables, the discounted information I(S; Rd) is 
bounded from above by the information I(S; R, TB) by the data processing inequality. If the model captures all 
effects of state variables TB on the stimulus-specific responses, then the information I(S; Rd) will be close to I(S; 
R, TB). Conversely, if the model captures only a small part of the relationships between stimulus, response and 
state variable, then the information I(S; Rd) will be very small compared to I(S; R, TB). As shown in Fig. 5c, in our 
data we found that the ratio I(S; Rd)/I(S; R, TB) was very close to one (0.91 ± 0.12 and 0.98 ± 0.07 when we took 
as response feature R and PC2, respectively). This suggests that our multiplicative linear model captures the vast 
majority of the stimulus-response-state relationships.

Modulation of the state dependent processing by application of norepinephrine.  We then won-
dered how state dependence changes when the spontaneous network firing regime changes. To investigate this, in 
addition to recording spontaneous and evoked activities from cell cultures in the basal condition, we pharmaco-
logically manipulated the same neural cultures (n = 5) to alter their spontaneous firing.

Cultures were treated with norepinephrine, a neuromodulator that was previously shown to reduce the 
burst frequency and to increase the sparse spiking activity among bursts, both in-vivo18,19 and in-vitro20. Our 
recordings showed that the norepinephrine did not alter significantly the spontaneous firing frequency (basal 
1.06 ± 0.26 Hz versus norepinephrine 1.12 ± 0.45 Hz, p = 0.92, n = 5, Wilcoxon signed-rank test), but decreased 
the spontaneous network burst rate (basal 2.47 ± 0.67 burst/min, norepinephrine 2.11 ± 0.76 burst/min, p = 0.03, 
n = 5, Wilcoxon signed-rank test). Importantly, using norepinephrine led to a systematic decrease in the network 
synchrony (measured as the fraction of coincident spikes among spike trains recorded in different electrodes, 
see Methods) (Fig. 6a). Under norepinephrine, and when TB was used as a state variable, including state knowl-
edge still provided a significant information gain (Fig. 6b). There were two noticeable differences in terms of 
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stimulus information coding, however, between treated and untreated cell cultures. First, upon norepinephrine 
treatment, the information about the stimulus carried by responses R increased (Fig. 6b, left). Second, the infor-
mation gain when considering also the state variables TB was reduced (Fig. 6b, right). When considering other 
population response features such as PCs and CAT, the stimulus information in neural responses and the infor-
mation gain due to state knowledge (Fig. 6c and d) showed the same qualitative pattern across response features 
that we found for untreated cultures. As in untreated cultures, when using norepinephrine PC2 had the highest 

Figure 5.  Discounting predicted trial-to-trial response variability from single trial response increases the 
stimulus information. (a) Mean ± SEM across all experiments of the mutual information between stimulus 
and response in a post-stimulus time window of [0 100] ms. We considered either MUA or PC2 as response 
representations. Information is computed before (I(S; R), black bars) and after (I(S; Rd)) discounting from the 
single trial response r the trial-to variability predicted by, respectively, the full model (red bars), the purely 
multiplicative (green bars) and the purely additive (blue bars) model. Among the evaluated response features 
only MUA shows significant differences between I(S; R) and I(S; Rd) for the full, multiplicative and additive 
models (black asterisk, F(3,396) = 8.58, p = 10−5, one-way between subject ANOVA followed by Tukey’s HSD 
multiple comparison test), whereas differences are not significant (p = 0.07) for PC2. (b) Information gain and 
percentage information gain for different response representations computed using the purely multiplicative 
model. Symbols {> <} mark data groups that have similar means (Tukey’s HSD, p < 0.05), see Supplementary 
Information. Black and red symbols indicate not significantly different means for, respectively, information 
gain (F(10, 1089) = 3.6, p = 10−5, one-way between subject ANOVA followed by Tukey’s HSD multiple 
comparison test) and percentage information gain (F(10,1089) = 7.9, p = 10−12). (c) Mean ± SEM across all 
experiments of the discounted information ratio, measured as the ratio between I(S; Rd) and I(S;R, TB) (F(10, 
1089) = 2.6, p = 0.003). Symbols {> <} mark data groups that have similar means (Tukey’s HSD, p < 0.05), see 
Supplementary Information.
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Figure 6.  Cell cultures treated with norepinephrine display increased information and decreased information gain 
with respect to the basal untreated condition. (a) Each box-plot shows mean ± SEM of the spike synchronization 
coefficient computed over 100 randomly selected sets of 100 electrodes from the whole array. The synchronization 
coefficient decreases significantly when the norepinephrine drug is added in all tested cell cultures (two tailed 
t test, p = 10−6, p = 10−4, p = 10−6, p = 10−4, p = 10−6 for, respectively, session 208, 212, 214, 331 and 332, black 
stars). (b) Mean ± SEM across experiments and time window [0 100] ms of information and information gain 
computed with MUA as response feature and TB as state variable for basal and norepinephrine conditions. Black 
stars label significant difference between basal and norepinephrine conditions (one tailed t test, p = 10−10 and 
p = 10−9 for information and information gain). (c) Mean ± SEM across experiments with norepinephrine of 
the information with different response features (MUA, PC, CAT) computed over the [0 100] ms time window 
after stimulus. Different symbols indicate no significantly different means (F(12, 1287) = 34.4, p = 10−30, one-way 
between subject ANOVA followed by HSD multiple comparison test). (d) Mean ± SEM across experiments with 
norepinephrine of information gain and percentage information gain. Different symbols indicate no significantly 
different means of different response features (F(12, 1287) = 7.1, p = 10−12). Note that no significant difference 
was found for percentage information gain (p = 0.6). (e) Mean ± SEM across all experiments for MUA and PC2 
as different response features of the direct information in a time window of [0 100] ms after stimulus computed 
before (black bars) and after discounting state variable TB from the single trial response r, respectively for, the 
full model (red bars), the multiplicative model (green bars) and the additive model (blue bars). (f) Mean ± SEM 
across experiments with norepinephrine of information gain and percentage information gain of the multiplicative 
model. Different black and red symbols indicate no significantly different means of information gain (F(10, 
1089) = 4.3, p = 10−6) and percent information gain (F(10, 1089) = 2.7, p = 0.002) for different response features. 
In panels c,d and f the symbols { > < ̂  = # V} mark data groups that have similar means (Tukey’s HSD, p < 0.05).
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stimulus information, and both MUA and the first few PCs had a good information gain when considering state 
knowledge. Moreover, also when using norepinephrine no linear model did better than the multiplicative-only 
state-dependence model in leading to higher information gains after state discount (p = 0.052 and p = 0.9 for, 
respectively, MUA and PC2, one-way between subject ANOVA followed by Tukey’s HSD multiple comparison 
test). These results indicate that similar state-dependence processing principles apply to both basal and norepi-
nephrine cultures, although the addition of norepinephrine may affect the strength of state dependence.

A small subset of electrodes carries most of the stimulus information and of its state information gain.  
Is the response of cultured networks truly distributed across the entire network, or is there a small subset of sites 
that carries all or most of the information in the network? Studies from various preparations suggested that neural 
information is sparsely distributed across cells21,32–34 that is, only a small fraction of neurons genuinely contribute 
to information for the task at hand, so that in some cases the most informative neurons discriminate the stimuli as 
well as the animal does21,35. However, these experiments have been based only on recordings of small populations, 
and have not considered the distribution across large sets of simultaneously recorded cells of the state dependent 
gain. The large-scale recordings that we performed allowed us to assess the information carried by neural activity 
expressed at thousands of sites, and thus put us in a privileged position to investigate this issue. To answer this 
question, we compared the information carried by the whole array with information carried by considering only 
a smaller subset of selected electrodes. An effective way to identify channels with good stimulus-driven responses 
is to use the top spatial PCs, as those identify the spatial patterns with the highest variance of activity across all 
trials. To select the subset of electrodes, we considered the spatial map of each one of the top 10 spatial PCs, and 
we considered only a fraction of electrodes that had the highest weight (measured in SD units from the mean PC, 
see Methods). Additionally, we varied the selection threshold parametrically from 1 to 7 SD units. We then com-
puted for each subsampled set the information it carried (averaged over all experiments and all considered top 10 
PCs per experiment). Since the results obtained by thresholding of different PCs were also relatively stable, and 
also because the regions identified by different PCs had a relatively large overlap (Supplementary Figs S4 and S5), 
we averaged results obtained with different PCs. We found that choosing a threshold of 3 SD units (σ3 in Fig. 7a, 
which corresponded on average to selecting 78 ± 5 units per experiment, that is only a small fraction of the total 
of recorded channels) was enough to preserve within 95% of the total information. The information decreased 
when increasing the selection threshold. However, it remained not significantly different from the information 
carried by the whole array up to thresholds of 3 SDs. Using very high thresholds, such as 7 SDs, or even using 
extreme selection criteria that only considered 1 or 5 electrodes per experiment selected by the top weights (n1 
and n5 respectively in Fig. 7a), still gave a surprisingly large percentage of the information computed from the 
whole array (e.g. 82.5% of the information is accounted for by ~24 electrodes using a threshold of 5 SDs).

We then investigated whether the gain in information after discounting state dependence, and quantified 
again as I(S; R, Θ) − I(S; R), is distributed across the entire population or whether it can be achieved by the same 
small subset of electrodes that carries a large fraction of the stimulus information. We therefore repeated the sub-
sampling analysis described above for the information gain. Results (Fig. 7b, red line) show that the information 
gain of the whole network can be fully recovered from the small subset on selected electrodes that carry the most 
stimulus information. For example, small subsets of channels selected for PCs with a threshold of 2 SD (138 ± 9 
channels per experiments) are sufficient to recover 97% of the information gain of the whole array. Given that 
our results show that information is carried by a small subset of neurons, we wondered whether this meant that 
the information about network activity could be also recovered using a less dense electrode array with fewer 
electrodes. To investigate this issue, we subsampled the channels using a square grid with wider spacing (2, 4, 8, 
16 fold less) than the native inter-electrode separation (to simulate having a less dense array) and we computed 
the information about the stimulus both only considering response, I(S; R) or including also state dependence, 
I(S; R, TB). We found (Fig. 7c and d) that only part of the total network information (71%, 54%, 38%, 13% for a 
subsampled grid with 2, 4, 8, 16 reduction from the truly used one) could be recovered from the subsampled data. 
Note that we found equivalent results, for a given number of subsampled electrodes, when subsampling the data 
either with spatial structure described above or at random.

To verify whether the selected electrodes were spatially organized in regions of the network we performed 
a clustering analysis on their spatial location using the DBscan algorithm (see Methods) and we quantified the 
goodness of the clustering procedure with the Silhouette coefficient. This analysis showed that they clustered 
in a few areas of the network (Supplementary Fig. S4). To assess our analysis, we also verified that the selected 
electrodes could be better clustered (Fig. 8a) than any equivalent random set of the same number of electrodes. 
We then further characterized these areas with respect to the rest of the network using graph theory measures. To 
this aim we first computed the strength of the functional connections using cross-correlation (see Methods). We 
found that the cross-correlation peaks among the selected electrodes were significantly higher than in any other 
size-equivalent subset of non-selected electrodes (Fig. 8b). Successively, we computed the mean-path-length (i.e. 
the mean of the shortest paths between any pair of electrodes) among the selected and non-selected electrodes. 
We found that the mean-path-length (MPL) among the selected electrodes was lower than the same measure 
computed over any size-equivalent subset of non-selected electrodes (Fig. 8c). As a consequence of the lower 
MPL, we could estimate that the connectivity among selected electrodes was much more recurrent than among 
subsets of non-selected electrodes. Interestingly, this is a known property that contributes to sustain state depend-
ent processing in neural networks1. Seemingly we found that the information gain was significantly higher for the 
selected electrodes with respect to the non-selected ones (Fig. 8d).

To investigate whether the areas with highest mean firing rate correspond to the ones with the highest PC 
weights, we performed an additional analysis in which we quantified the overlap between groups of electrodes 
of increasing spontaneous firing rate and electrodes selected at different thresholds on the PC weights. Results 
(Supplementary Fig. S6) show that the selected electrodes with high threshold have a large overlap with the 
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electrodes in the highest quintile of firing. Thus, areas with higher PC weights approximately, but not fully, coin-
cide with those that fire the most. The fact that neurons firing the most carry on average more information is well 
documented in cortical recordings (see e.g.21). Here, since we could not measure local cell density in the cultures 
from which we recorded neurophysiological responses, we could not determine if the electrodes with more infor-
mation and firing corresponded to regions with higher cell density or higher excitability.

In sum, the implemented selection criteria allowed the determination of a subset of electrodes that are inform-
ative as the whole set of electrodes about external stimuli; that cluster in few regions of the network in which 
activities are efficiently broadcast and where most of the state dependent processing takes place.

Discussion
The ability of networks of neurons to process external stimuli is not a fixed property, but it can vary from time to 
time to match changes in the operational demands36. These changes in operational modes are under the control 
of various factors, which include neuromodulation37–39, spontaneous changes in network excitability and oth-
ers. These changes are believed to profoundly affect stimulus-response relationships, for example enhancing or 
suppressing the stimulus-response gain or changing the threshold at which weaker stimuli elicit a strong enough 
response to be detected. Signatures of changes in the internal state of the network can be in part detected through 
changes in the spontaneous activity of the network prior to stimulation. However, studies of how state changes, as 
revealed by spontaneous activity, affect stimulus-response representations have been limited mainly to single cells 
or small populations of neurons4,6,40. Here we built on these previous studies by considering how different features 
of population spontaneous dynamics affect the responses of very large populations of neurons. We took advantage 

Figure 7.  The information and information gain are carried by a subset of electrodes. For each experiment 
and PC, we selected subgroups of electrodes with PC weight (i.e. eigenvector values) higher than 1 to 7 
standard deviations (σ1 to σ7) from the mean PC. We also selected electrodes with the highest (n1) and 
highest five (n5) PC weights. For any selection, the information and the information gain are averaged across 
PCs and experiments (n = 4) and the corresponding means and SEM are reported. (a) The mean information 
of the selected electrodes is comparable to the information of the entire electrode array (ALL) up to σ3, that 
corresponds to ~61 selected electrodes (F(9, 390) = 26.4, p = 10−35). The symbol = marks the data group that 
has similar means (Tukey’s HSD, p < 0.05), see Supplementary Information. (b) The mean information gain 
of the selected electrodes is comparable to the entire set of electrodes (ALL) up to σ4, that corresponds to ~37 
electrodes (F(9, 390) = 20.9, p = 10−29). Stars indicate no significantly different means respect to ALL (one-way 
between subject ANOVA followed by Tukey’s HSD multiple comparison test). The symbol = marks the data 
group that has similar means (Tukey’s HSD, p < 0.05), see Supplementary Information. (c) The information 
decreases steeply with the downscaling of the number of recording electrodes (i.e. the scaling factors 2, 4, 8 
and 16 correspond to down-sampled arrays of size 32 × 32, 16 × 16, 8 × 8 and 4 × 4, respectively). (d) The 
information gain decreases even more steeply and decays almost to half of its value with a downscaling of 2. 
For each scaling factor the information and the information gain are computed for different samplings of the 
available 64 × 64 electrodes. The mean and SEM over the different samplings are reported.
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of the unique sampling of neural activity offered by in-vitro networks grown on high-resolution CMOS-MEA 
devices and capable of large-scale recordings and on-chip electrical stimulation. Neuronal cultures respond effec-
tively to stimuli26,41 and have a rich structure of spontaneous network bursting activity42 and therefore are ideally 
suited to this study. The implications of our results are discussed in what follows.

Advances in characterizing state dependence in large scale networks.  Previous studies have high-
lighted how the responses of relatively small neural populations depend on the spontaneous activity prior to 
stimulus presentation43–45 and how the state dependence of these responses to stimuli can be used to better extract 
information from neural activity4. In particular, previous studies of our group4,31 have proposed that predicting 
with a model of state dependence the fluctuations of the single trial response around its mean in each trial can 
drastically improve decoding of population activity. This is because this calculation allows the identification and 
elimination of network-level sources of variability that, being correlated across neurons, cannot be eliminated and 
averaged away just by increasing the number of electrodes and averaging over more neurons. One of the main 
advances we made in this study is to characterize state dependence and information gain due to state knowledge 
in large neural populations densely sampled with thousands of electrodes. Demonstrating that we can gain infor-
mation from large networks with knowledge of pre-stimulus state is an important step for proposing the viability 
of state-dependent coding as a coding mechanism in the nervous system. In fact, it could be that we report a state 
information increase at the level of single neurons or few neurons but perhaps this gain would be absent if we con-
sidered a larger network, because the information that is only available in state for one neuron may be available as 

Figure 8.  Spatial structure of electrodes selected by thresholding PCs. In all panels the electrodes are selected 
with PC weights higher than 3 SDs (SELECTED). All measures on SELECTED are compared to measures 
on equally sized sets randomly chosen from the complementary set of the non selected electrodes (n = 100 
repetitions) and the 95th values of those bootstraps are reported (BOOTSTRAPS). All box-plots are relative 
to the pooling of 10 PCs and 3 experiments. Red horizontal lines are means computed across 3 experiments, 
boxes show the interquartile range and the whiskers correspond to the 5th and 95th percentiles. (a) The silhouette 
coefficients, a measure of goodness of spatial clustering, are significantly higher when computed on the 
SELECTED electrodes respect to the BOOTSTRAPS (Wilcoxon signed-rank test, n = 30, p = 10−5). (b) The 
mean peak cross-correlation coefficients are significantly higher among the SELECTED electrodes respect to 
the BOOTSTRAPS (Wilcoxon signed-rank test, n = 30, p = 10−6). (c) Similarly, the mean path length is shorter 
among the SELECTED electrodes respect to the BOOTSTRAPS (Wilcoxon signed-rank test, n = 30, p = 0.001). 
(d) Finally, the information gain, computed over the [0 100] ms time window, is higher in the SELECTED 
electrodes respect to the BOOTSTRAPS (Wilcoxon signed-rank test, n = 30, p = 10−6).
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post-stimulus response in another neuron. The fact that we find still a sizeable advantage in very large networks 
suggests that the above scenario can be ruled out, and adds strong support to the relevance of state dependent 
information. It also supports the idea that this state dependent variability reflects variability shared at the network 
level which cannot be removed by adding more electrodes (because, being common or shared across electrodes, it 
cannot be averaged away by considering more electrodes). This study therefore strongly suggests that implement-
ing state dependent decoding rules in decoding of brain activity can improve the performance of brain machine 
interfaces (BMI), even when those are based on large numbers of recording electrodes. The difficulty of increasing 
the performance of BMIs by increasing the number of electrodes has been recognized as a main bottleneck of 
BMI developments46–48. Our study suggests that the use of state dependent decoding algorithms can ameliorate 
this problem.

The access to a large fraction of neurons in the network also allowed us to probe the sparse nature of this 
information encoding. Previous studies based on simultaneous recordings of a small number of neurons reported 
that most of the population information is carried by a few informative neurons21 and that the most informative 
neurons carry nearly enough information to support the discrimination abilities of the whole animal35. Our 
results show that this picture, that was formed over the years from small population recordings, also holds for 
large-scale recordings. In particular, our work shows that one main advantage of recording from a large num-
ber of neurons in the network is that it facilitates the individuation of the neurons that carry the most stimulus 
information. Our finding that the information gain found at the whole network level was also found when con-
sidering the few selected neurons that carry the core of the network information again suggests the importance 
of considering state-dependent coding. This is compatible with the view put forward above that state dependent 
coding is an effective way to get rid of part of the variability shared by all neurons in the network, including the 
most informative ones.

Importance of state dependence for population coding.  The presence of state-dependence puts pro-
found – but still largely unexplored – constraints on how population codes operate14. State-dependence may 
imply that populations transmit information only using codes that are robust to state fluctuations. Alternatively, 
downstream areas may extract variables indicating the current state from network activity and then use 
state-dependent decoders to interpret population activity. The information theoretic formalism used here allows 
to inform us quantitatively on how efficient the two above population codes may be4,40. A high value of stimu-
lus information from neural responses I(S; R) obtained without knowledge of network state would support the 
first scheme, that of using state-independent variables for coding and transmitting information40. On the other 
hand, a lower value of I(S; R) paired with a higher value of information in neural response I(S; R, Θ) obtained 
when including knowledge of state would support the latter coding scheme4. The fact we found in all datasets 
more information when including knowledge of state dependence suggests that it would be more efficient to pass 
information to other networks through a state dependent code. How and if this may happen remains to be inves-
tigated. However, given that both state variables and network responses computed here were based on spiking 
activity, they are in principle accessible to downstream networks.

In networks recorded in-vivo from awake behaving subjects, a potential way to investigate whether the net-
work reads out state dependent coding information is to measure not only how much stimulus information is 
gained by knowledge of the state dependence, but also to measure, using the concept of intersection information, 
how much of this information gain is turned into behavioural performance49,50. When recording simultaneously 
from several different networks, whether or not the state dependence is used to pass information form one net-
work to the next can be measured, using similar concepts, by measuring if state dependent codes in one network 
influence responses in a downstream network in the same trial. Encouraged by the results of the present work 
that state dependent coding advantages exist also in largely sampled networks of thousands of neurons, we plan 
to verify these hypotheses in future experiments with dense electrode arrays in-vivo.

Changes of state-dependent information with the level of network synchronization.  In our 
experiments, we manipulated the level of network synchronization by using norepinephrine. In cultures with 
norepinephrine, we found that overall lower synchronization was accompanied by an increase of information 
in state-independent codes and a decrease of information gain when considering state-dependent codes. This 
result is again fully consistent with our view that considering the state dependence of neural responses is an 
effective way to reduce the variability that is shared across all electrodes and that cannot thus be eliminated by 
sampling more neurons to better average away this variability (i.e. synchronized network, by definition, have 
more shared variability). Previous experimental investigations51 have shown that norepinephrine increases the 
strength of inhibitory connections in the cortex. Our results on changes of information processing when apply-
ing norepinephrine drug are thus compatible with a previous computational study that investigated the role of 
interneuron mediated synchrony in information processing52. This work proposed that when interneurons have a 
strong enough effect to generate asynchronous states, an external input elicits a highly reliable response (i.e. high 
stimulus related information). In contrast, in a more synchronous firing regime, strong fluctuations of spiking 
activity tightly interact with delivered stimuli allowing state dependent processing of information. All in all, 
these results suggest that state dependent coding mechanisms may be used and be more crucial in synchronized 
networks, as it is an effective coding mechanism to transmit information robustly despite the shared variability 
of neurons in these networks.

Network bursts as effective state parameters.  Our data show that cultured networks prepared from 
embryonic hippocampal neurons express variable responses to electrical stimuli that are strongly modulated 
by the time interval (TB) between the stimulus and the last spontaneous network burst. This time interval was 
thus considered to be the most effective state variable. Additionally, we found that this state variable acts largely 
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by modulating the stimulus-response gain of the network. Previous studies11,13,53,54 on cultured networks also 
described the existence of relationships between network response features and the stimulus latency relative to 
the previous burst. A previous study54 showed that responses of cultures to a given stimulus and recorded with a 
64 electrode array are weaker (respectively stronger) at shorter (respectively longer) TB values. Our results extend 
this previous result to study the modulatory effects of TB on the network response, sampled with thousands of 
electrodes, by a set of different electrical stimuli. The consideration of multi-stimuli responses was essential for us 
to show that the modulation of TB acted as a multiplicative modulation term of the stimulus-response gain, rather 
than as an additive term. The fact that we could well fit state dependence with a simple multiplicative model opens 
up the possibility to use our new results on the dependence of network responses on TB for online control of 
single site stimulation54 to the control of multiple-site stimulation, thus opening up the possibility to acquire hints 
for developing better bidirectional control of BMIs. Previous results11,13 have also suggested that the occurrence of 
a spontaneous burst wipes out the information dependence of the post-burst response on the previous stimulus.

Our results suggest that refractory effects following a network burst may be responsible for the state modu-
lation of population responses to stimuli. It is important to note that this kind of state-dependent modulation, 
entirely based on features of the ongoing activity before stimulus presentation, differs substantially from the kind 
of state dependence, mostly related to behavioural state changes such as attention, arousal and network synchro-
nisation, implied by most studies of state-dependence in cortex10. However, one possible link between the results 
obtained here and the periodic gain rescaling observed in vivo in cortex at different phases of the theta rhythm6 
is that resets of cortical theta phases are often preceded by bursts of network depolarization of duration similar 
to the network bursts documented here55. This suggests that, while our notion of in-vitro state dependence differs 
from the one usually employed in cortical studies, some of the mechanisms observed here may relate to some of 
the effects of ongoing pre-stimulus activity on cortical stimulus-response relationships.

Possible mechanisms for gain rescaling.  We found that the main effect of the time between the last 
spontaneous burst and the stimulus was to rescale the gain of network response to stimuli, with the network 
eliciting weaker responses from shorter times from the last burst. This effect on the gain may arise from several 
possible mechanisms. The increase of network responses at longer TB may be mediated by asynchronous synap-
tic release and spontaneous excitatory post-synaptic currents increase when the evoked synchronous release is 
depressed56,57. Or following a network burst the neuronal culture enters into a refractory period. Further, shortly 
following a network burst the synaptic connections may be depressed because of synaptic depletion58,59 and, con-
sequently, neurons may respond more weakly to stimuli.

Spatial structure of the most informative regions.  Finally, by analysing the graph network properties 
we systematically found that the electrodes carrying the most information had a specific spatial organization. 
These informative electrodes were grouped in regions of the network and were characterized by strong func-
tional connections with low average path lengths. Previous studies in-vivo60,61 and in-vitro62 showed that neural 
networks are characterized by a small-world topology, with a short mean path length and a high clustering coef-
ficient. Moreover, these neural networks are typically characterized by the presence of hubs, or groups of neurons 
with a high out/in degree that allows relaying information quite effectively to a large portion of the network. 
This property likely plays a special role in information processing. Recently, it has also been shown in cell cul-
tures63 that hubs might be involved in broadcasting spontaneous activity from early-to-fire neurons to the whole 
network. Additionally, we recently showed, in a computational model23 validated against our high-resolution 
electrode array recordings, that such ‘functional hubs’ (called functional communities in23) can naturally emerge 
in random networks in which the degree of connectivity is comparable to cell cultures and the probability of 
connection decays with the interneuron distance. Here, we proved the presence in these networks of spatially 
organized subsets of more informative neurons. Taken together, these facts suggest that, even if neurons are plated 
homogeneously, they can self-organize to generate small subsets of neurons that, due to their highly organized 
spatial structure, their graph theoretic properties, and strong connectivity, may act as hubs able to broadcast both 
state dependent and state independent information.

Materials and Methods
Ethical statement.  All procedures involving experimental animals were performed in accordance with the 
Italian and European Union guidelines and regulations. All animal procedures carried out in this work were 
approved by the institutional Istituto Italiano di Tecnologia (IIT) Ethics Committee and by the Italian Ministry of 
Health and Animal Care (Authorization number 110/2014-PR, December 19, 2014). The primary rat hippocam-
pal cultures were obtained following procedures described in Supplementary Methods and in previous work64.

Data availability statement.  All data can be downloaded from http://www.sicode.eu. All scripts used to 
analyze the data will be provided upon request to the lead contact author.

Quantification of the state variables.  We investigated a set of potential state variables θ, all obtained 
from spontaneous activity recorded in the last 4 seconds preceding the stimulation. Most such variables were 
defined in terms of the network burst (NB)23,27. A NB was identified when the pooled network activity, binned in 
20-ms bins, exceeded a threshold T. The threshold T was determined as 10% of the maximal binned spike count 
in a session. The timing of the NB was refined by sliding (slid by 1 ms) leftward the bins until the binned activity 
fell below threshold.

We considered the following as candidate state variables: the time interval between the stimulus and the last 
network burst before stimulation (TB), the number of spikes in the last network burst (NSP), the ignition site 
of the last network burst (IS), the network burst rate (NBR, the number of NB) and the mean firing rate (MFR, 
the mean number of spikes per electrode divided by the recording time window). We also considered the phase 

http://www.sicode.eu
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at stimulus time and the pre-stimulus time-averaged amplitude of the network multi-unit activity (MUA, see 
Supplementary Information), computed with the Hilbert transform of filtered in 6 different frequency bands  
([1 6], [6 12], [12 18], [18 30], [30 50] and [50 100] Hz) using a least-square finite impulse response filter with 
1-Hz transition bandwidth.

Mutual information.  To quantify stimulus coding we used mutual information measures. First, we com-
puted the information I(S; R), about which stimulus s (out of a set S of possible stimuli) was being presented in 
a given trial, and the post-stimulus response r (out of a set R of possible responses) in the same trial. Second, we 
quantified the information I(S; R, Θ) about the stimulus carried by the joint observation, in the same trial, of the 
post-stimulus response r and the pre-stimulus state parameter θ. These quantities were defined as follows:

∑= |
|I S R P s P r s P r s

P r
( ; ) ( ) ( )log ( )

( ) (3)s r,
2

∑ θ
θ
θ

Θ = |
|I S R P r s P r s

P r
( ; , ) ( , )log ( , )

( , ) (4)s r,
2

where P(s) is the probability of presentation of stimulus s, P(r) is the probability of observing response r across 
all trials to any stimulus, P(r|s) and P(r, θ|s) are the probability of observing response r given the presentation of 
stimulus s and of observing response r and state θ, in the same trial, given presentation of stimulus s, respectively. 
Information is measured in bits (1 bit corresponds to a reduction of uncertainty by a factor of two). Details of the 
direct numerical calculation of information from the above equations is given in Supplementary Information, 
Section “Numerical Procedures to compute direct estimates of mutual information”.

We defined the information gain due to the knowledge of state as: I(S; R, Θ) − I(S; R). This measure has the 
advantage of concentrating the effect of θ on the stimulus dependence of r (see Supplementary Methods, section 
“Information Gain”, for more details).

Linear model of the dependence of the single trial response on the state variables.  We mod-
elled the single trial neural response r as a function of the state variable θ with θ = TB. As a first step, we checked 
whether TB affects r as an additive term to the mean response at fixed stimulus 〈rs〉. To this end we computed dr as 
the average across all stimuli of the trial-to-trial response variability at fixed stimulus: dr(TB) = 〈dr〉S = 〈r − 〈r〉S〉S 
and evaluated how dr depends on TB. We also checked whether the state variable TB affected the mean response 
to the stimulus 〈rs〉 by estimating how the ratio r/〈rs〉 depends on TB. Finally, we estimated rmodel as the sum of two 
components, the first one takes into account the multiplicative term that scales the population response at fixed 
stimulus while the second one takes into account the additive offset that affects all trials at a given state variable 
TB:

= 〈 〉 +r g TB r b TB( ) ( ) (5)model S

where we evaluated the slope g(TB) and the additive b(TB) functions, of each experiment and at each time point 
t after the stimulus, with a least square solution of the equation r = g(TB)〈rS〉 + b(TB) at fixed TB, with TB dis-
cretized in 6 values.

For each experiment we fitted the functions g(TB, t) and b(TB, t):
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Together with the full model we also considered the purely multiplicative (b(TB) = 0) and additive models (g(TB) 
= 1). Then, for each time point t we discounted trial-to-trial state-dependent response variability from single-trial 
response by Eq. (7):

= − =
−r r dr r b TB
g TB

( )
( ) (7)d

The evaluation of Eq. (7) is problematic for small TB (i.e. small g(TB), 15 to 20% of the total trials). The latter 
trials (say M) were removed before computing I(S; Rd). In order to compare it with the other information meas-
ures, we randomly removed M trials from the calculation of I(S; R), I(S; R, Θ) and I(S; R, ΘSH) with Θ = TB. We 
repeated the random selection procedure 10 times and we took the average information. The trials removed from 
I(S; R), I(S; R, Θ) and I(S; R, ΘSH) are not the same ones removed from I(S; Rd), to avoid any knowledge about Θ 
to the responses R. We modelled rmodel with the “full model”, which includes a slope and a background component, 
as well as the contribution of the two parts, namely the “purely multiplicative” model (rmodel = g(TB)〈rS〉) and the 
“purely additive” model rmodel = 〈rS〉 + b(TB). We evaluated the goodness of fit of all models with the coefficient 
of determination R t( )adj

2  between response set R and Rmodel at fixed stimulus and for each time, defined as:
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where SSE is the sum of squared error, SST is the total sum of squares, n is the number of trials and k is the num-
ber of model parameters. We also compared the performance of each model by using the Bayesian information 
criterion (BIC):

=






 +BIC n ln SSE

n
k lnn

(9)

For each model j we computed the BIC weight:

=
∑

−

−
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e (10)
j
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j
BIC BIC

( )

( )

min j

min j

A given weight yields the evidence in favour of model j being the actual best model among the considered set 
of models.

Electrode selection criteria and clustering.  We performed an analysis to determine if information and 
state dependency could be equally well explained when considering a subset of highly representative electrodes 
over the 4096 array. For selecting the electrodes, we used Principal Component Analysis. In particular, each 
eigenvector PCj (with j = 1, …, 10) allows to associate a weight to all electrodes: = …PC PC PC PC[ , , , ]j j j j

1 2 4096 . 
We define μj and σj as, respectively, the mean and the standard deviation across the PCj weights and we select the 
electrodes i satisfying the criteria μ σ| − | >PC Kj

i
j j. The parameter K was swept over the interval [1 7] and regu-

lates the strength of the selection. We also performed a selection on the electrodes that fell more apart from the 
mean value μj and considered the most (n1) and the five most significant electrodes (n5). The overlap between 
sets A and B was quantified as 100 · #(A ∩ B)/min(#A, #B), where ∩ is the intersection and # indicates the cardi-
nality of the corresponding sets. The overlap measure ranges from 0 (no intersection) to 100 (full intersection). 
The significance of the intersection (p < 0.05) between different sets of electrodes was assessed with the 
hyper-geometric test. The clustering of the selected electrodes was performed with the density based DBscan 
algorithm and its parameters were determined by maximizing the Silhouette coefficient. In order to assess the 
significance of the Silhouette coefficient we considered randomized equivalent sets of electrodes (n = 100 repeti-
tions, same number of electrodes of the original set) and computed the 95thpercentile of the bootstrapped silhou-
ette coefficients. The clusters were visualized in terms of alpha shapes of parameter α = 0.1 (Supplementary 
Fig. S4).
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